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Abstract

In this paper we prove that if feCy([0,1]?) and the function f is bounded partial p-
variation for some pe[l,+o0) then the double Walsh—Fourier series of the function f is
uniformly (C; —a, —f) summable («+ f<1/p,a,f>0) in the sense of Pringsheim. If o+

p=1/p then there exists a continuous function fy of bounded partial p-variation on [0, 1]2 such
that the Cesaro (C; —a, —f) means ¢, % #( f3;0,0) of the double Walsh-Fourier series of f;

diverge over cubes. ,
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1. Introduction

Let ro(x) be a function defined by

1, if xe[0,1/2),
= 1 = .
() {1’ e ) = ()
The Rademachere system is defined by
ra(x) =r9(2"x), n=1 and x€[0,1).
“Fax: +99-532-536-583.
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Let wo, wy, ... represent the Walsh functions, i.e. wo(x) = 1 and if k = 2" + ... 4 2%
is a positive integer with n; >n, > -+ >ny then

wie(x) = 1, () -1, (X).

The idea of using products of Rademacher’s functions to define the Walsh system
originated from Paley [9].
The Walsh—Dirichlet kernel is defined by

Recall that [1, Chapter 1]

2" if xel0,1/2"),

0, if xe[1/2",1). M)

Dy (x) = {

We consider the double system {wy,(x) X wy,(¥):n,m=0,1,2,...} on the unit
square 1> = [0,1) x [0, 1).
If f e L(I?), then

1 1
F(nm) = / / 06,90 (5w ()l dy

is the (n, m)th Fourier coefficient of 1.
The Cesaro (C;a, f)-means of double Walsh—Fourier series are defined as follows:

m

A% lAf; A wi(x)w;(p),
AAE;}; A i ()

oh (fix,y) =

where

(¢4 1) (o +n)

Ar=1, A= .

, aFE—1,-2 ...

Let Cy (1%) be the set of all functions f: /> — R that are uniformly continuous
from the dyadic topology of I? to the usual topology of R with the norm [10,
pp. 9-11]

1/1le = sup |/ (x,p)l.

x,yel?
The dyadic partial moduli of continuity of a function f € Cy/(1?) are defined by

@1(f301) = sup{|| S (x@u, ) = f(x, ¥)llc: O<u<éi},
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2(f362) = sup{|| f(x,y®v) — f(x, )| 0<v <2},

where @ denotes dyadic addition [1, Chapter 1].
A function f: I> > R is said to be of bounded variation in the sense of Hardy
(feHBV (I%)) [6] if there exists a constant K such that for any partition

Al 0 xp<x1<xp<---<Xx, <1,

A O<yo<y1<yp<---<ym<l,

we have

n—1 m—1

Via(f) = sup Z Z|f (xi,9i) = f (Xit1,5)

AixAy Y=o =0
— f(xi,yp41) +f (xip1, 541 [ K,

-1

Vi(f) = supsup Z |/ (xiy) = f (xis1, )| <K,
A i=0

-1 m—1

V2(f) = supsup Z |/ (e, ) =S (%, 01) | <K.
XA D0 G0

Definition 1. We say that the function f:I>— R is bounded partial p-variation
(fePBV,(I?)) if

n—1
Vi(f), = supsup S 1 ay) =S K p)
1 i=0

Vz(f )p = Sup sup Z |f(xvyj) 7f(x7yj+1)|p

X A =0

are finite.

Given a function f(x,y), periodic in both variables with period 1, for 0<j<2"
and 0<<i<2" and integers m,n>0 we set

A (x,p), =f(x@227" 1 y) = f(x@ (2 + 1)27" L, y),
A (x,0), = f(x,y®2i27"7") — f(x,y@ (2 +1)27"7),
AGf (x,p) = AH(ATS(x,0)1), = A (AL (x,),),
=f(x®227" L y@227" ) — f(x®(2j + )27 y@2i27 )
—f(x®@22 ! y®(2i+1)27"
+fx@2j+ 12" L y®@i+1)27" ).
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Denote
i

1 m
W (fix,y) =Y AT G,

=1

2"—1

|
W;EZ)(f; x,y) = Z ilTﬂ|Aif(X7J’)z|7

i=1

2. Formulation of the problems

Jordan [7] introduced a class of functions of bounded variation and, applying it to
the theory of the Fourier series, he proved that if a continuous function has bounded
variation, then its Fourier series converges uniformly. In 1906 Hardy [6] generalized
the Jordan criterion to the double Fourier series and introduced for the function of
two variables the notion of bounded variation. He proved that if the continuous
function of two variables has bounded variation (in the sense of Hardy), then its
Fourier series converges uniformly in the sense of Pringsheim.' The analogous result
for double Walsh—Fourier series is verified by Moricz [8]. The author [2] has proved
that in Hardy’s theorem there is no need to requere the boundedness of Vi, (f );
moreover, it is proved that if f is continuous function and has bounded p-partial
variation (f'e€ PBV,) for some pe[l,+oco) then its double trigonometric Fourier

series converges uniformly on [0,271]2 in the sense of Pringsheim. The analogous
result for double Walsh—Fourier series is established in [3].
In [4] the following theorems are proved:

Theorem A. Let feCw(I*)nPBV, and o+ <1, a,f€(0,1). Then the double
Walsh—Fourier series of the function f is uniformly (C; —o, —f3) summable in the sense
of Pringsheim.

Theorem B. Let o+ = 1,a,>0. Then there exists a continuous function fye PBV)
such that the Cesdro (C;—a, —f) means ,% #(f0;0,0) of the double Walsh—Fourier
series of fo diverge over cubes.

On the basis of the above facts the following problems arise naturally:

Let f € PBV,(I*) n Cy (1?), for some pe[l,+o0). Find all values of «, B (0, 1) for
which the uniform convergence of Cesaro (C;—a, —f) means of double Walsh—
Fourier series of the function f* holds.

'A double series is said to converge in the sense of Prinsgeim if its partial rectangular sums converge.
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The solution of this problem is given by Theorems 1 and 2.
3. Main results
The main results of this paper are presented in the following propositions.

Theorem 1. Let f'e Cy/(I*)\PBV,, for some pe(l,+o) and o+ f<1/p,a, f>0.
Then the double Walsh—Fourier series of the function f is uniformly (C;—o,—p)
summable in the sense of Pringsheim.

Theorem 2. Leto.+ f>1/p, o, f>0. Then there exists a continuous function fy € PBV,
such that the Cesdro (C;—a, —B) means o, % P( fy;0,0) of the double Walsh—Fourier

n,m
series of fo diverge over cubes.

Theorems 1 and 2 imply

Theorem 3. Let o, fe(0,1) and pe|l, oo). For all double Walsh—Fourier series of class
Cw(I*) " PBV, to be uniformly (C;—a,—p) summable it is necessary and sufficient
that

o+ p<1/p.

4. Auxiliary results
We shall need

Lemma 1 (Tevzadze [11]). Let
o 1 . o
K0 = S A pwi)
n j=0
Then there exists a positive integer s, such that

2i
om .

o a2 0] di=c(a92”

S
is fulfilled if i<m — s for great m.
Lemma 2. Let f be continuous 1-periodic functions on [0,1] and o€ (0, 1). Then

_ 1
(1) = flle <o (1.1 )

where w(9,f) is the modulus of continuity.

The proof can be found in [5].
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Lemma 3. Let fe CW(IZ) and
Wrsl)(faxvy) m (f’x y) lm’l(f;x’y)_)o

uniformly with respect to x,y as m,n— oo . Then the double Walsh—Fourier series of the
Sfunction f is uniformly (C;—o, —p) summable in the sense of Pringsheim.

The proof can be found in [3].

5. Proofs of main results

Proof of Theorem 1. To prove the theorem on the basis of Lemma 3 it suffices to
show that

WD (f5%,0), WO L%, 9), W (f3%,7) =0

uniformly with respect to x,y as m,n— oo.
Using Abel Transformation we obtain

2"—1

lfx)/ 1|

i=1

2"-2 1 i
= Z( W) >IN (x,p), ]

i=1 j=1

Lo
t Ty 2 Al =TI S
- i=1

Using Holder inequality, from the condition of the theorem we get

| 21 1/p
I<———7— AV (e, o 17
(zn_l)w<;| (.30

1
:0<W> =o(l) as n— o, (3)
y-2 oy
O() Z 22— Z|A7f(x7y)l

i=1 =1

i(n) i 212

i 1/p
1 n 1 . n
S S W+ S m(ZIA,f(w)ll”)
=

i=1 J=1 i=i(n)+1

< C(oc){a;l (f21> (i(n))* + (@)l/ﬂ} —o(l) as no oo, )
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where

. 1 1\
| <ma wl(f,?)m * <E)

From (2)—(4) we obtain
WV (f;%,9) -0

uniformly with respect to x,y as n— co.
Analogously we obtain

W2(f;x,9) -0

uniformly with respect to x,y as m— 0.
Using Hardy transformation, we obtain

—2 2m-2
Won(f5%,) = Z Z(

i J

« Z Z |Anm

=1 s=1

| - 2m-2< | | ) i zj:
+ ( > TP B |AL"f
2n—1 A VAR A Dy B e

=1+ +II+1V.

It is evident that

Z Z|A”’” x, )| <2 sup Z|A X0
=1

and
i

J
Z D I (xy |<2lsup ZW (X, 7),]-

s=1
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Consequently,

i J
D> AR ()
=1 s=1

o B
i J otf [ i J a+p
l’ll‘ﬂ nm
> AR (x, ) |AL"f (x, )]
=1 s=1 =1 s=1
o

o i a+p
<2j*+F sup ( > A (x,p), )
y

I=1
B

B j o+p
x B | sup Z \Agnf(an’)ﬂ :
Xoos=1

103

(10)

Using Holder inequality, by (10) and from the condition of the theorem we get

L1\
o+ o+
< -
B

2" _ﬁ 2m—1 o+f
><sup<z |ALf(x, ), ) <sup > IA?’f(x,y)ﬂ)
X s=1
!

S Wl 1 \pep Pt
I om ]

o

y =1

L—(X L—/)’
| p(o+p) 1 p(o+p)
=0 ﬁ m_ ] :0(1) as n,m— o0.

1 1-p 2 P21 -
I < ¢(a) (2”1 — 1) Z Z Z |ALf(x,9)]
I o
1 _ﬁ on_ | o+p
< C((X) (2)71 _ 1) Z 1+_7 Sup(z |A7f(x7y)l |>

B
om_q m
xcsup( > [ATf(x,p),]
X s=1

'3 — n
< o) 1\ P i=2 1
= 2111 _ 1

T4t
i1 ptp)

_B
21 p(a+p) 2m-1 p(o+p)
x sup | Y |ALf (x, ), I sup Y [AYS(x,p), "
X s=1
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2o Fem)
XSUP(Z |ATf (x, ), )

y =1

21 Pt
x [ sup Y ATS(x,p),l"
~* s=1
B
1 \rept & 1
<c(a)(2m_ 1) IZ: T

1§ pltp

1\ P
<c(ac)(ﬁ)p -0 asnm— 0.

Analogously, we obtain

II-0 asnm— 0.

From (10), we write

2"=2 22

1 P
S sup<z M), |>
B
b/ ) 1 J a+p
D b Ll POILECER

o

r2 P+P)
S S

1
i=1 i +p(a+/3

_b

2m=2 J po+p)
DD ek DILCRINY B

] p(oc+/f) B x s=1

Since

S (z )"
sup |A].
i=1 il+P(0(+ﬁ y
o
p+P)
S sup Z\A;f x ol

i(n)

=2

P

(14)
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72 e
+ > - sup(ZA/fxy |>

i=i(n)+1 i p(oc+[f) Y

<elo ,,){ E (f,;n)]mi(n)“r (b)m} = o(1) asnor,

where

:{[oa<fa>ﬁ<«nw+%W‘“}v

from (14) we get

xi —>0 as n,m— 0. (15)
J=1 j (a+[f)
Combining (7), (11)—(13) and (15) yields
Wan(f:%,3) 0 (16)

uniformly with respect to x,y as m,n— oo.
By (5), (6), (16) and from the Lemma 3 the proof of Theorem 1 is complete. [

Proof of Theorem 2. We choose a monotone increasing sequence of positive integers
{lk: k=0} such that /y>s (where s is the same as in Lemma 1) and

Le>20_1,k>1, (17)

atp
2% 1
2
zlkzxﬁzz ( ) <E' (18)

Consider the function ¢, defined by

2hH2x — 2, xe 22702 (2 4+ 1) /27k2)
—(202x = 2j = 2),xe[(F + 127072, (2 +2)/274 )
forj=1,...,r(k,p)—1

0 otherwise,

Pp(x) =

b

pr(x+1) =@(x), I=+1,%2,..,
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where

(o1t
l"(lk,p) = de{J . 21k/17 Szzlkfl/lj ’

Let
:Zl(zl" )ﬁ (),

where

@(%) = @, (x) sign K57 (x).

U. Goginava | Journal of Approximation Theory 124 (2003) 96—-108

It is evident that fy is continuous on I’ and l-periodic with respect to each
variable. Since o + > 1/p, from the construction of the function f; we obtain that

foe PBV,,(1%).

We show that the (C; —a, —ff)-means of the double Walsh—Fourier series of the

function f; diverge over cubes for (x,y) = (0,0).
Indeed,

21k 21, (anO 0) f6(070)

:/0 /0 fo(x,y)K;,ka( ) 2’k( )dXdy

271 271 2 k171 2= lk—1-1 1 1
0 0 —I/\.—l —/k—l —I/\.71 -1 2—1/\.71 -1

x (fo(x, ) Kyl (x) K, P(y)dxdy) =14 11+ 11,

Since |K,*(x)| = O(n), for I we obtain

I</ / |foxy|| LK ()] dx dy
Sc(o,f)  max | folx,y) =o(l) as k- 0.

x,ye[0,27%1]?

Since

4B
k-1 atf

Dli-1
11| < Z( ) % — o3 (@Ml — o3 (oDl

i=1

(20)
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1 pX
o _
o(t) = (i)
].
B 1 . 21
(42)-of2)

from Lemma 2 and by (18) we obtain

and

ot

(2 - p 1 I (24B)
[T ] - < < Z( ) <<P,',2lk) ( ,,2&)2/(
i=1

k L ok le(2+P)
2 ! P 2k 2l

t:l

k

otp
/1
=c(a, leﬂ pary Z(z 1) ! 221’<@=0(1) as k— 0.

From the construction of the function, we obtain

1NSE pres e
o —o
I = <2lk—lkl> /27 . q)k(x)Kz,k (x) dx

-1

(lke-p) ' P s
x /zv, . (P/c(y)Kzlk (y) dy

(3

1NEL e
— —o
() " [ ekl

r(l ,p)Z”/c
L Ikl

f-1
By Lemma 1 we write

r(lep)2 !
[, el

-1

d
llogy rlep)] st

=c E : /2{171 | 21k( )‘dx
d=1 ST

logy r(l.p)]

N
>c(0) Y 2“d20(a)(r(lk,p))“>c(o¢)<2_>p_

Ik
d=1 2

107

(1)

(23)
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Analogously we obtain

r(lp)27 ! y N

/le—l ¢k(y) |K21,\. (y)| dy = C(ﬁ) <%> . (24)
After substituting (23) and (24) in (22) we have

111> c(a, f) > 0. 0s)

Owing to (19)—(21) and (25), we arrive at
JTim o350 (/6,0,0) = £o(0, 0)] > (. §) > 0.

The proof of Theorem 2 is complete. [

Observe that the result of this paper can be proved in the same way for dimension
more than 2.
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